(2x^2-3x-x^3+4)-(5x^2-9x-x^3+5)=

Simple and best practice solution for (2x^2-3x-x^3+4)-(5x^2-9x-x^3+5)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2-3x-x^3+4)-(5x^2-9x-x^3+5)= equation:


Simplifying
(2x2 + -3x + -1x3 + 4) + -1(5x2 + -9x + -1x3 + 5) = 0

Reorder the terms:
(4 + -3x + 2x2 + -1x3) + -1(5x2 + -9x + -1x3 + 5) = 0

Remove parenthesis around (4 + -3x + 2x2 + -1x3)
4 + -3x + 2x2 + -1x3 + -1(5x2 + -9x + -1x3 + 5) = 0

Reorder the terms:
4 + -3x + 2x2 + -1x3 + -1(5 + -9x + 5x2 + -1x3) = 0
4 + -3x + 2x2 + -1x3 + (5 * -1 + -9x * -1 + 5x2 * -1 + -1x3 * -1) = 0
4 + -3x + 2x2 + -1x3 + (-5 + 9x + -5x2 + 1x3) = 0

Reorder the terms:
4 + -5 + -3x + 9x + 2x2 + -5x2 + -1x3 + 1x3 = 0

Combine like terms: 4 + -5 = -1
-1 + -3x + 9x + 2x2 + -5x2 + -1x3 + 1x3 = 0

Combine like terms: -3x + 9x = 6x
-1 + 6x + 2x2 + -5x2 + -1x3 + 1x3 = 0

Combine like terms: 2x2 + -5x2 = -3x2
-1 + 6x + -3x2 + -1x3 + 1x3 = 0

Combine like terms: -1x3 + 1x3 = 0
-1 + 6x + -3x2 + 0 = 0
-1 + 6x + -3x2 = 0

Solving
-1 + 6x + -3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
0.3333333333 + -2x + x2 = 0

Move the constant term to the right:

Add '-0.3333333333' to each side of the equation.
0.3333333333 + -2x + -0.3333333333 + x2 = 0 + -0.3333333333

Reorder the terms:
0.3333333333 + -0.3333333333 + -2x + x2 = 0 + -0.3333333333

Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000
0.0000000000 + -2x + x2 = 0 + -0.3333333333
-2x + x2 = 0 + -0.3333333333

Combine like terms: 0 + -0.3333333333 = -0.3333333333
-2x + x2 = -0.3333333333

The x term is -2x.  Take half its coefficient (-1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
-2x + 1 + x2 = -0.3333333333 + 1

Reorder the terms:
1 + -2x + x2 = -0.3333333333 + 1

Combine like terms: -0.3333333333 + 1 = 0.6666666667
1 + -2x + x2 = 0.6666666667

Factor a perfect square on the left side:
(x + -1)(x + -1) = 0.6666666667

Calculate the square root of the right side: 0.816496581

Break this problem into two subproblems by setting 
(x + -1) equal to 0.816496581 and -0.816496581.

Subproblem 1

x + -1 = 0.816496581 Simplifying x + -1 = 0.816496581 Reorder the terms: -1 + x = 0.816496581 Solving -1 + x = 0.816496581 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = 0.816496581 + 1 Combine like terms: -1 + 1 = 0 0 + x = 0.816496581 + 1 x = 0.816496581 + 1 Combine like terms: 0.816496581 + 1 = 1.816496581 x = 1.816496581 Simplifying x = 1.816496581

Subproblem 2

x + -1 = -0.816496581 Simplifying x + -1 = -0.816496581 Reorder the terms: -1 + x = -0.816496581 Solving -1 + x = -0.816496581 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = -0.816496581 + 1 Combine like terms: -1 + 1 = 0 0 + x = -0.816496581 + 1 x = -0.816496581 + 1 Combine like terms: -0.816496581 + 1 = 0.183503419 x = 0.183503419 Simplifying x = 0.183503419

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.816496581, 0.183503419}

See similar equations:

| -2=a(6) | | 7x*-15=2x | | 3-2x-7=7+14x | | 5(x+2)+x+2=20 | | A-2+3=4 | | (x^2-4)(x^2-4)(x^2-4)=0 | | -4x+3=-12 | | (x+y-1)dy=(x-y-3)dx | | X^2+4x=125 | | -357=7(7m+6)-7 | | 30=3d+3 | | Y-4=3(0-1) | | 26x-6-15x+2=21x-6-10x+17 | | 6=a-2 | | -8x-21=43 | | 3x+4+x^2=0 | | x^2+3-180=0 | | Y-4=3(-1-1) | | 100=20+x-.2x | | -5cd^3(8d+3c-c^2d)=f(x) | | 3(6x+9)+2x=69 | | 5n+4=67-4n | | 16=-2x-4y | | 75-6x=4x-14 | | x^2(x^4-12x^2-16)=64 | | 281.6=20+x-.2x | | 6.7a+14=94.4 | | -4x+6(5x+4)=154 | | 4x^2=-45 | | 8x^2+29x+90=0 | | 40x^2-400x+500=0 | | 4.07x+28.49=56.98 |

Equations solver categories